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Abstract
No major advances have been made in improving overall survival for glioblastoma (GBM) in almost 100 years. The cur-
rent standard of care (SOC) for GBM involves immediate surgical resection followed by radiotherapy with concomitant 
temozolomide chemotherapy. Corticosteroid (dexamethasone) is often prescribed to GBM patients to reduce tumor edema 
and inflammation. The SOC disrupts the glutamate–glutamine cycle thus increasing availability of glucose and glutamine 
in the tumor microenvironment. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and 
drive GBM growth through substrate level phosphorylation in the cytoplasm and the mitochondria, respectively. Emerging 
evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability while elevating ketone bodies 
that are neuroprotective and non-fermentable. Information is presented from preclinical and case report studies showing how 
KMT could target tumor cells without causing neurochemical damage thus improving progression free and overall survival 
for patients with GBM.
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GBM	� Glioblastoma
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KMT	� Ketogenic metabolic therapy

Introduction

Glioblastoma (GBM) remains largely unmanageable and 
has among the highest mortality rates for primary brain 
tumors. Median life expectancy following diagnosis is only 
about 11–14 months for most GBM patients regardless of 
the hype surrounding some of the newer of therapies [1–5]. 
A recent reevaluation found that overall survival for GBM 
(8–14 months) is woefully similar to that reported by Bai-
ley and Cushing almost a century ago [5, 6]. Indeed, US 
Senator, John McCain, was diagnosed with GBM in May 
2017, and died in August 2018. The ‘Secondary Structures 
of Scherer’ are the defining characteristic of GBM, which 
include diffuse parenchymal invasion and growth over the 
subpial surface, along white matter tracks, and through the 
Virchow–Robin spaces [7–11]. The highly invasive nature 
of GBM through these secondary structures makes most cur-
rent therapies ineffective [12–15]. The quality of life has also 
remained poor for most GBM patients especially for those 
receiving radiation and the toxic alkylating agent, temozo-
lomide [16–18] (Fig. 1).

GBM contains a range of morphologically diverse neo-
plastic cell types that express neural, glial, and myeloid/
mesenchymal markers [3, 19–27]. Also recognized are 
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mitochondrial structural abnormalities seen in autopsy/
biopsy tissue obtained from GBM patients (Figs. 2, 3). Sev-
eral groups have documented GBM cells with reduced or 
increased numbers of morphologically abnormal mitochon-
dria with laminations and aberrant or absent cristae that can 
alter mitochondrial function [5, 28–36]. Some mitochon-
dria in human GBM cells contain few if any cristae and 
also show defects in mitochondrial associated membranes, 
all of which would compromise energy production through 
oxidative phosphorylation (OxPhos) [32, 37]. These abnor-
malities are not often recognized in cultured GBM cells, 
where mitochondria are often considered normal. Abnor-
malities in the content and composition of cardiolipin, the 
signature lipid of the mitochondrial inner membrane that 
regulates oxidative phosphorylation (OxPhos), were found 
in five independently derived murine GBMs [28, 38, 39]. It 
is unlikely that OxPhos will function normally in any tumor 
cell with defects in cardiolipin.

A multitude of findings support the notion that OxPhos 
is defective in GBM [29, 31, 33, 40–42]. Based on the 

Fig. 1   Kaplan–Meier estimates of overall survival of patients with 
GBM by treatment group. The two patient groups included radiother-
apy alone (n = 278), and radiotherapy with temozolomide (n = 254). 
From [18] with permission

Fig. 2   Morphological abnormalities in GBM mitochondria. The 
morphology of 150 mitochondria was assessed in 6 GBM samples 
and in 7 peritumoural control samples using Electron Microscopy 
(EM). a Percentage of normal mitochondria where cristae were vis-
ible throughout the mitochondria in peritumoural control and GBM 
samples (each bar represents one sample; ***p value = 0.0001); b 
percentage of abnormal mitochondria where cristae were sparse 
and abnormal in peritumoural control and GBM samples; ***p 

value = 0.0001). c and d Representative EM images of normal 
and abnormal mitochondria, respectively. The scale bars represent 
0.5  μm. Cristolysis was significantly greater in mitochondria from 
GBM than in mitochondria from control brain. The authors reported 
117 mitochondrial proteins altered in GBM in association with ultras-
tructural mitochondrial abnormalities, similar to those described pre-
viously by Arismendi-Morillo et al. [32]. Image reproduced under a 
Creative Commons license from Deighton et al. [34]
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biological principle that mitochondrial structure determines 
mitochondrial function [5, 43], these multiple mitochondrial 
abnormalities, which can be of genetic and/or environmental 
origin, [44–46], will compromise effective energy production 
through OxPhos. As a consequence, fermentation metabolism 
will be necessary to compensate for the deficiency in OxPhos. 
A chronic reliance on fermentation will cause an OxPhos-dam-
aged cell to enter its default state, i.e., a state free of respiratory 
control [46–49]. It is important to recognize that fermentation 
driven unbridled proliferation was the metabolic state of all 
cells prior to the appearance of oxygen in the atmosphere some 
2.5 billion years ago [46, 50]. Survival in such environments 

would therefore require a constant supply of fermentable fuels. 
The transition from OxPhos to fermentation will facilitate the 
production of anabolic intermediates that support the biosyn-
thetic processes necessary for unbridled cell growth [5, 51].

In view of the documented abnormalities in GBM mito-
chondria, alternative energy source(s) to OxPhos must be in 
place to maintain cell viability [5]. Accumulating evidence 
indicates that glucose and glutamine are the primary fer-
mentable fuels used for driving the rapid growth of most 
tumors, including GBM [5, 52–55]. Abundant levels of 
glucose and glutamine are also available in cyst fluid that 
is often present in GBM and could be used as fuel for the 
growing tumor cells [5, 56]. Other potential metabolic fuels 
in the tumor microenvironment, e.g., acetate and branched 
chain amino acids, are either not present in sufficient quan-
tities to drive growth through fermentation or exert non-
metabolic effects that are yet to be understood [5, 30, 57]. 
While amino acids other than glutamine and glutamate could 
also be fuels, they would require one or more high-energy 
phosphates during metabolic interconversions before becom-
ing succinyl-CoA, the substrate for mSLP [5]. Hence, glu-
cose and glutamine are the most readily available ferment-
able fuels for driving GBM growth through glycolysis and 
glutaminolysis.

Glucose drives tumor growth through aerobic fermen-
tation (Warburg effect), whereas glutamine drives tumor 
growth through glutaminolysis [58–61]. Metabolism of 
glucose and glutamine is also responsible for the high anti-
oxidant capacity of the tumor cells thus making them resist-
ant to chemo-and radiotherapies [30, 62, 63]. We recently 
identified mitochondrial substrate level phosphorylation 
(mSLP), as major source of ATP synthesis for GBM cells 
[5]. We described how lactic acid fermentation (Warburg 
effect) through glycolysis in the cytoplasm and succinic acid 
fermentation through glutaminolysis in the mitochondria 
(Warburg Q-Effect) could compensate for deficient OxPhos 
in GBM cells [5]. Succinic acid fermentation using glu-
tamine as a major substrate is now recognized as the missing 
link in Warburg’s central theory that aerobic fermentation 
compensates for dysfunctional respiration in cancer [5]. It is 
important to mention that glucose and glutamine can provide 
all of the anabolic intermediates necessary to support rapid 
biosynthetic processes through glycolysis in the cytoplasm 
and glutaminolysis in the mitochondria. Hence, glucose and 
glutamine-driven fermentation underlies the energy produc-
tion needed for GBM growth and invasion.

The Current Standard of Care for GBM

The current standard of care (SOC) for GBM involves 
surgical resection and radiotherapy with concomitant and 
adjuvant temozolomide (TMZ) [18, 64]. High dose steroid 

Fig. 3   Typical ultrastructure of mitochondria from a human glioblas-
toma. That structure determines function is a key concept in biology, 
especially for mitochondria [43]. Normal mitochondria contain elabo-
rate cristae, which are extensions of the inner membrane and contain 
the proteins and lipids (cardiolipin) of the electron transport chain 
necessary for producing ATP through OxPhos [38, 160, 161]. The 
mitochondria from the glioblastoma (m) show a total or near total 
breakdown of cristae (cristolysis) and an electron-lucent matrix. The 
absence of cristae and other structural abnormalities seen in glioblas-
toma mitochondria indicate that OxPhos would be deficient [5]. Our 
recent findings also show that mitochondrial associated membranes 
(MAM) are also abnormal in human malignant gliomas, which would 
further compromise mitochondrial function [37]. Upper micrograph 
bar 0.5 mm. Below micrograph bar 0.8 mm. Method of staining: ura-
nyl acetate/lead citrate. The upper micrograph is new and the lower 
micrograph was reprinted with permission from Journal of Electron 
Microscopy [32]
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(dexamethasone) is often prescribed along with the SOC to 
reduce vasogenic edema [15, 65, 66]. It is now recognized 
that surgical resection and radiotherapy produce significant 
necrosis and hypoxia in the tumor microenvironment [67, 
68]. Inflammatory oncotaxis following surgical resection of 
lower-grade brain tumors could also contribute to their trans-
formation to high-grade secondary GBM [69, 70]. Moreo-
ver, surgical resection and radiotherapy damages the brain 
microenvironment, which will increase glucose availability 
to remaining tumor cells thus driving tumor growth through 
hyperglycolysis resulting in therapy resistance [71–73]. 
Abundant evidence shows that survival is shorter in GBM 
patients with higher blood glucose levels than in patients 
with lower glucose levels [74–82]. Radiotherapy also facili-
tates tumor cell-macrophage/microglial fusion-hybridization 
thus producing highly invasive metastatic cells [22, 83, 84]. 
It has been our view that the highly invasive mesenchymal 
cells seen in GBM are derived from neoplastic microglia or 
from fusion hybridizations of microglia/macrophages with 
non-invasive cancer stem cells, as has been described for 
other highly invasive and metastatic cancers [22, 84–86].

Surgery and radiotherapy disrupt the tightly regulated 
glutamine-glutamate cycle in the neural parenchyma thus 
increasing the levels of glutamine and also glutamate, an 
excitotoxic amino acid that enhances GBM invasion [56, 
87–90]. Although TMZ increases progression-free survival, 
it has only marginal effect on overall survival, while simul-
taneously increasing the number of GBM driver mutations 
[18, 91]. Additionally, dexamethasone not only increases 
blood glucose levels further, but also increases glutamine 
levels through its induction of glutamine synthetase activity 
[5, 66, 89, 92, 93]. The anti-angiogenic drug bevacizumab 
(Avastin) is also widely prescribed to GBM patients [94–96]. 
Bevacizumab exacerbates tumor necrosis while selecting for 
the most invasive and therapy-resistant tumor cells [97, 98]. 
Both bevacizumab and TMZ damage mitochondria [99], 
which would contribute further to tumor cell reliance on 
cytoplasmic and mitochondrial fermentation metabolism 
for growth [5]. Invasion of GBM cells through the Vir-
chow–Robin spaces will make immunotherapy marginally 
effective for GBM management [100]. Immunotherapies 
could be effective for GBM management as long as there 
is evidence showing that they do not enhance inflamma-
tion, increase availability of glucose and glutamine in the 
tumor microenvironment, or cause hyperprogressive disease, 
as was seen in non-small cell lung cancer [101]. Most of 
the studies to date that have used immunotherapy for GBM 
patient management have been less than encouraging [102, 
103]. This outcome should not be surprising, however, as 
immunotherapy is based largely on the view that cancer is 
a genetic disease rather than a mitochondrial metabolic dis-
ease [41, 46, 90, 104]. Viewed collectively, the current SOC 
damages the microenvironment and facilitates delivery of 

glucose and glutamine to GBM cells, all of which will con-
tribute to tumor recurrence and rapid progression (Fig. 4).

It should also be recognized that many GBM cells are 
infected with human cytomegalovirus (HCMV) that would 
further facilitate tumor cell use of glutamine and glucose 
[105, 106]. Recent studies show that vaccine-targeting of the 
HCMV pp65 protein could significantly increase progres-
sion free and overall survival of some GBM patients [107]. 
It would be interesting to determine if this therapeutic effect 
resulted in part from a disruption of glycolysis or glutami-
nolysis in GBM cells [108, 109]. Glucose and glutamine are 
the prime metabolites needed for synthesis of glutathione 
and manganese superoxide dismutase, which make GBM 
cells resistant to chemotherapy and radiotherapy [5, 30]. It 
is known that elevated aerobic fermentation also drives the 
multidrug resistant (MDR) phenotype, which protects GBM 
cells from toxic chemotherapy [3, 30, 63]. Hence, the SOC-
linked increase in fermentable energy metabolites and dis-
ruption of the tumor microenvironment can explain in large 
part why overall survival remains so poor for most GBM 
patients [5, 71]. In light of the presented information, does 
the current SOC still seem to be the most rational approach 
to GBM management?

Ketogenic Metabolic Therapy

Ketogenic metabolic therapy (KMT) is emerging as a viable 
complimentary or alternative therapeutic strategy for malig-
nant gliomas [64, 78, 90, 110–120]. Calorie restriction and 
low-carbohydrate high-fat ketogenic diets (KD) reduce the 
glucose needed to drive the Warburg effect while also elevat-
ing ketone bodies that cannot be metabolized for energy in 
tumor cells due to defects in mitochondrial structure and 
function [5, 32, 37, 38, 104, 118, 121–124]. There have 
been reports, however, suggesting that some brain tumors 
can oxidize ketone bodies or express enzymes for ketone 
body metabolism [125, 126]. The expression of ketogenic 
enzymes or uptake of ketone bodies together with oxygen 
consumption in tumor cells does not necessarily mean that 
the ketone bodies can be used to generate energy through 
OxPhos [5]. Indeed, moderate disruption of the mitochon-
drial proton motive gradient will cause a reversal of the 
F1-F0 ATP synthase thus hydrolyzing ATP rather than syn-
thesizing ATP [5]. Upregulation of mitochondrial substrate 
level phosphorylation, as an alternate source of ATP synthe-
sis, will stabilize the F1-F0-ATP synthase thus preventing 
reversal. Glucose and glutamine become the prime fuels for 
increased substrate level phosphorylation reactions is the 
cytoplasm and mitochondria, respectively. Ketone bodies 
and fatty acids cannot be fermented and cannot therefore 
serve as major fuels for tumor cells with defective OxPhos 
[5]. Oncogenes such as Hif-1alpha, Myc, Ras, BRAF, etc., 
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facilitate the dependence of tumor cells on glucose and 
glutamine while defects in the tumor suppressor genes 
p53 and pRb increase OxPhos dysfunction [5, 127–132]. 
In contrast to these gene defects, which will enhance fer-
mentation metabolism, mutations in the genes for isocitrate 
dehydrogenase (IDH1, IDH2) are linked to improvement in 
overall GBM survival [133]. We recently suggested that the 
IDH mutations will divert metabolism of glutamine-derived 
alpha-ketoglutarate from succinyl CoA to 2-hydroxyglutar-
ate (2-HG), thus depriving energy production through mSLP 
[5]. No tumor cell can grow without energy regardless of its 
genetic composition [5]. The KMT depletion of fermentable 

fuels will facilitate catastrophic tumor cell death without 
harming normal neural cells.

The GBM microenvironment is hypoxic, acidotic, and is 
enriched with glucose and glutamine. This pro-tumorigenic 
microenvironment becomes less inflamed under KMT, 
which also significantly reduces tumor mass and enhances 
apoptotic cell death (Figs. 5, 6). Calorie restriction and 
restricted KD are anti-invasive, anti-angiogenic, anti-inflam-
matory, and capable of killing some tumor cells through a 
pro-apoptotic mechanism [121, 134–137]. Metabolism of 
the major circulating ketone body, d-beta-hydroxybutyrate, 
is also neuroprotective in reducing reactive oxygen species 

Fig. 4   How the standard of care can provoke glioblastoma growth 
and recurrence. Although GBM is biologically complex, glucose and 
glutamine are the primary energy metabolites necessary for driv-
ing rapid GBM growth [54, 162–165]. Glucose is the metabolic fuel 
for nearly all brain functions under normal physiological conditions 
[166]. Tumor cells metabolize glutamine to glutamate, which is then 
metabolized to alpha-ketoglutarate in the TCA cycle [53]. Significant 
energy is generated from the succinyl CoA ligase reaction (substrate 
level phosphorylation) using alpha-ketoglutarate-derived succinyl 
CoA as substrate [5]. In contrast to extracranial tissues, where glu-
tamine is the most available amino acid, glutamine is tightly regu-
lated in the brain through its involvement in the glutamate–glutamine 
cycle of neurotransmission [166, 167]. Glutamate is a major excita-
tory neurotransmitter that must be cleared rapidly following syn-
aptic release in order to prevent excitotoxic damage to neurons [88, 
167]. Glial cells possess transporters for the clearance of extracel-
lular glutamate, which is then metabolized to glutamine for delivery 
back to neurons. Neurons metabolize the glutamine to glutamate, 

which is then repackaged into synaptic vesicles for future release. 
The cycle maintains low extracellular levels of both glutamate and 
glutamine in normal neural parenchyma. Disruption of the cycle can 
provide neoplastic GBM cells access to glutamine. Besides serving 
as a metabolic fuel for the neoplastic tumor cells, glutamine is also 
an important fuel for cells of myeloid linage, which include mac-
rophages, monocytes, microglia, and especially the highly invasive 
mesenchymal cells in GBM [22, 168, 169]. In contrast to the highly 
proliferative GBM stem cells, the neoplastic GBM mesenchymal 
cells are thought to be derived from microglia or from microglia-stem 
cell fusion hybrids, which would have immuno-suppressive prop-
erties [22, 170]. As long as GBM cells have access to glucose and 
glutamine, the tumor will grow making long-term management dif-
ficult. The current SOC for GBM creates a microenvironment rich in 
glucose and glutamine that will facilitate rapid tumor recurrence (see 
text for further details). RAC = reactive astrocytes; TAM = tumour-
associated macrophages. Gln = glutamine. Glu = glutamate. From 
[89] with permission
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production through the mitochondrial Co-enzyme Q couple 
in normal cells, while simultaneously elevating oxidative 
stress in tumor cells [30, 138–141]. Implementation of KMT 
should also decrease the need for high-dose dexamethasone, 
and prevent steroid-induced hyperglycemia [142, 143]. It is 
our view that the anti-invasive effects of calorie restriction 
and restricted ketogenic diets could demarcate better the 
tumor margins, which would facilitate greater debulking of 
human GBM (Fig. 5) [64]. In fact, gross total resection of 

the tumor is regarded as a survival advantage, and therefore 
the therapeutic effects of KMT should improve progression 
free and overall survival thus benefiting GBM patients.

Therapeutic ketosis is linked to reduced blood glucose 
levels and elevated ketone bodies levels within normal 
physiological ranges [144]. Evidence shows that therapeu-
tic ketosis can act synergistically with several drugs and 
procedures to enhance cancer management improving both 
progression free and overall survival [30, 119, 145, 146]. 

Fig. 5   Influence of KMT on invasion of the preclinical VM-M3 
GBM. VM-M3/Fluc tumor fragments were implanted into the cer-
ebral cortex as described [137]. The mice were fed either a high-
carbohydrate standard diet, or a ketogenic diet in restricted amounts 
(KD-R) to reduce body weight by about 15–18%. The tumor cells 
are densely packed and show massive invasion from the tumor mass 
into the lighter stained normal brain tissue in mice fed the high-car-
bohydrate standard diet. In contrast, the tumor cells are less densely 

packed and show less invasion in mice fed the ketogenic diet. The 
reduced invasive behavior and sharper tumor boarders were linked 
to therapeutic ketosis (reduced blood glucose and elevated beta-
hydroxybutyrate) [137, 171]. Caloric restriction also reduces the inva-
sion of tumor cells from the implanted ipsilateral cerebral hemisphere 
into the contralateral hemisphere and significantly reduces invasion 
through “Secondary Structures of Scherer [137]

Fig. 6   Influence of KMT on the microenvironment and apoptosis of 
the preclinical VM-M3 GBM. Densely packed tumor cells with abun-
dant mitoses (arrows) are seen in mice fed the a high-carbohydrate 
standard diet in unrestricted amounts, a abundant apoptotic tumor 

cells with eosinic cytoplasm and condensed chromatin (arrows) are 
seen in mice fed a ketogenic diet in restricted amounts, b other condi-
tions are as shown in Fig. 5
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For example, hyperbaric oxygen therapy (HBOT) increases 
oxidative stress on tumor cells especially when used along-
side therapies that reduce blood glucose and raise blood 
ketones [147]. In reducing blood glucose levels, KMT would 
also reduce the immunosuppressive effects of lactate in the 
GBM microenvironment [148]. There is also evidence that 
therapeutic ketosis can facilitate drug delivery through the 
blood brain barrier [149]. Chloroquine neutralization of 
lysosomal pH can prevent invasive and metastatic tumor 
cells from obtaining glucose and glutamine through phago-
cytosis or autophagy [30, 150, 151]. Chloroquine can also 
inhibit mitochondrial diaphorases, which oxidize NADPH to 
NAD + thus reducing mitochondrial substrate level phospho-
rylation [5, 152]. The glutamine dehydrogenase inhibitor, 
epigallocatechin gallate (EGCG) is also proposed to target 
glutamine metabolism through an effect on glutamate dehy-
drogenase [153]. Hence, ketogenic metabolic therapy can, 
(a) target the multiple drivers of rapid glioma growth, (b) 
facilitate drug delivery through the BBB, and, (c) protect 
and enhance metabolic efficiency in normal brain cells. 
There are currently no GBM therapies to our knowledge that 
can simultaneously target these multiple drivers of GBM 
growth while, at the same time, protect normal neural cells.

Ketogenic Metabolic Therapy 
as an Alternative to SOC

The gold standard for a cancer therapy should involve the 
selective killing of tumor cells while avoiding damage to 
normal body cells. Unfortunately, the current SOC for 
GBM is wanting with respect to achieving this standard. 
As currently implemented, the SOC contributes to rapid 
tumor recurrence and the ultimate demise of the patient. 
Although many GBM patients have received KMT with 
SOC none, to our knowledge, have achieved or persistently 
maintained glucose ketone index (GKI) values of 1.0 or 
below, a biomarker for therapeutic ketosis [118, 126, 142, 
144, 154]. It is important to mention, however, that a GKI 
value of 1.0 can be difficult to achieve for many cancer 
patients. This can result in part from emotional stress and 
toxic SOC treatments, which elevate bold glucose [30, 
155]. It can take weeks for some patients to transition to a 
GKI near 1.0 [155]. Our GBM patient received KMT for 
3 weeks prior to surgical resection and for 3 months prior 
to radiation and TMZ chemotherapy [64]. The patient 
achieved a GKI close to 1.0, a reduction in Hunter’s angle 
(Choline/N-acetyl aspartate, NAA, ratio), correction of 
midline shift, and improved quality of life [64]. Unfor-
tunately, the patient died after 30 months from complica-
tions of radionecrosis. The diagnosis of radiation-induced 
necrosis was based on MRI perfusion and MRS in addition 
to gross tissue appearance and histological analysis. The 

surgeon reported the absence of detectable solid tumor 
mass; only yellowish grayish fragile avascular material. 
Histopathological analysis revealed inflammatory infil-
trates, liquefactive necrosis, vascular hyalinization, and 
endothelial damage further favoring the diagnosis of radio-
necrosis rather than recurrent tumor. Radiation-induced 
necrosis is now recognized as a serious issue for brain can-
cer patients [156]. A key question is whether survival for 
GBM patients would be better if KMT replaced radiation 
therapy considering the damage to normal cells and the 
growth promoting effects of radiation therapy. We know 
of only one long-term GBM survivor that has received 
KMT without also receiving radiation or chemotherapy 
(http://www.child​hoodc​ancer​2018.org.uk/speak​ers/pablo​
-kelly​.asp). While this case is anecdotal, his status indi-
cates that replacement of SOC with KMT did not reduce 
his progression-free survival or overall survival. Further 
studies will be required to determine whether the favorable 
response of this GBM patient to KMT is unique or would 
be common to other GBM patients.

KMT, as part of the press-pulse therapeutic strategy, is 
designed to target simultaneously the availability of glucose 
and glutamine to the GBM cells [30]. The linkage of fer-
mentation to malignancy is as solid as is that of the redshift 
to gravity [157]. As glucose and glutamine are the major 
fermentable fuels for GBM, the strategic restriction of these 
fuels will deprive the GBM cells of energy [5, 30]. As the 
membrane pumps are the largest consumers of cellular ATP, 
reduced ATP synthesis will cause tumor cells to swell and 
die [44]. It should be mentioned, however, that the unre-
stricted consumption of a ketogenic diet failed to suppress 
growth of the syngeneic CT-2A GBM preclinical model 
[121, 158]. This is likely due to excessive consumption of 
fat that can cause insulin insensitivity, as we previously 
showed [159]. As with any medicine, misuse of the KD can 
be ineffective or potentially harmful. The KD works best 
for managing cancer when consumed in restricted amounts.

Although several clinical trials are presently investigating 
KMT as a complementary treatment in patients receiving 
SOC for newly diagnosed or recurrent malignant glioma 
(clinical trials.gov), several challenges remain. Some of 
these challenges include existing barriers to clinical research 
in this field per se (technical issues with clinical trial design 
based on existing guidelines, ethical issues, insufficient cli-
nician awareness, and lack of incentives to fund such trials 
or research). These issues must be addressed before KMT 
can become the SOC for brain cancer management despite 
having a scientific rationale stronger than that for most the 
approaches currently used for managing GBM. It is likely 
that KMT will be used as a complimentary strategy with 
current conventional, non-metabolic antineoplastic strate-
gies, before consideration as a monotherapy. Support for 
synergistic interactions of KMT with SOC could facilitate 

http://www.childhoodcancer2018.org.uk/speakers/pablo-kelly.asp
http://www.childhoodcancer2018.org.uk/speakers/pablo-kelly.asp
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consideration of KMT as a monotherapy or as an alternative 
therapy for some currently used toxic procedures.

Conclusions

We have described how GBM is a type of mitochondrial 
metabolic disease where glutamine and glucose drive the 
growth of the heterogenetic neoplastic cell types [5, 64, 
90]. No other fermentable fuels are present in the tumor 
microenvironment in quantities sufficient enough to replace 
glucose and glutamine. We also previously described how 
the gene mutations seen in GBM and most other cancers 
arises as effects of destabilized energy metabolism [5, 30, 
45, 46, 104]. Would progression-free survival and overall 
survival of patients be improved with a non-toxic therapeutic 
strategy that targets the underlying metabolic defects located 
specifically in the neoplastic while also reducing inflam-
mation and edema in the microenvironment? This question 
could be answered in clinical trials that compare outcomes 
in GBM patients treated with either the SOC + KMT or with 
KMT alone.
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